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Аннотация 
Рассмотрена история возникновения теоремы Хана-Банаха. Введены основные линейные 
нормированные пространства, линейные непрерывные функционалы и их нормы. Введено   
понятие гиперподпространство, гиперплоскость. Приведены примеры на вычисление нормы 
функционала и продолжение функционала на все пространство с сохранением нормы.          
Линейные функционалы и их продолжение на все функциональное пространство с сохране-
нием нормы является мощным математическим аппаратом для развития многих направле-
ний современной математики. 

 
 
Введение 

В начале 20-го века, этап развития класси-
ческой математики был полностью завершен. 
Начинался этап развития современной матема-
тики.  

Необходимо было проанализировать и 
обобщить накопленные человечеством знания по 
математике. Перед учеными математиками сто-
яли новые идеи и задачи, посмотреть на изучен-
ные вещи иначе, с общей точки зрения. Выяснить, 
существует ли связь между различными матема-
тическими объектами, или другими словами, не 
вникая в природу математического объекта, изу-
чить его свойства. Это было оправдано тем, что 
такая связь существует и различные математиче-
ские объекты имеют общие свойства. 

Некоторые положения, которые легли в ос-
нову функционального анализа: Обобщение по-
нятия пространства, развитие и обобщение поня-
тия функции, создание понятия функционального 
пространства. 

Также на развитие функционального ана-
лиза оказали влияние физические теории, напри-
мер квантовая механика и квантовая теория поля. 
Многие понятия функционального анализа ши-
роко использовались физиками задолго до того, 
как им было дано строгое математическое обос-
нование. 

Высокая степень абстракции вводимых по-
нятий делает функциональный анализ довольно 
сложным. Именно абстрактность позволяет ис-
следовать далекие на первый взгляд друг от друга 
вопросы и успешно применять его методы в раз-
личных других дисциплинах.  

В функциональном анализе теорема Хана-
Банаха является основным результатом, который 

позволяет расширить ограниченные линейные 
функционалы, определенные на векторном под-
пространстве некоторого векторного простран-
ства, на все пространство. 

Теорема также показывает, что суще-
ствуют непрерывные линейные функционалы, 
определенные на каждом нормированном вектор-
ном пространстве, для изучения двойственного 
пространства.  

Другая версия теоремы Хана-Банаха из-
вестна как теорема Хана-Банаха о разделении 
или теорема о разделении гиперплоскостями и 
имеет множество применений в выпуклой геомет-
рии. 

Актуальность данной темы заключается 
в том, что теорема Хана-Банаха является эффек-
тивным теоретическим средством в практическом 
решении конкретных задач современной теорети-
ческой и прикладной математики.  

Тема исследования: Линейные непрерыв-
ные функционалы, теорема Хана-Банаха. 

Объект исследования: линейные функци-
оналы, теорема Хана-Банаха. 

Предмет исследования: определение 
нормы линейного непрерывного функционала, 
продолжение функционала на все пространство с 
сохранением нормы.  

Цель исследования: дать теоретическое 
обоснование понятий функционал, продолжение 
функционала при практическом их применении. 

Задачи исследования: 
1. Рассмотреть линейные непрерывные 

функционалы, заданные на линейных нормиро-
ванных пространствах. 

2. Изучить способы определения нормы 
функционала, дать ему геометрическую интер-
претацию. 
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3. Усвоить практическое применение тео-
ремы Хана-Банаха. 

Для решения поставленных задач исполь-
зовался комплекс методов исследования: 

– обобщение изученных ранее данных; 
– анализ научно-методической литера-

туры; 
– систематизация информации. 
Научная новизна: расширение возможно-

стей функционального анализа для решения задач 
современной науки: некоммутативный функцио-
нальный анализ, теория операторных алгебр, ве-
роятностный и стохастический функциональный 
анализ, функциональный анализ на простран-
ствах фрактальных структур. 

Практическое значение: материал, рас-
смотренный в данной статье, может быть исполь-
зован для решения задач математического и функ-
ционального анализа. 

Структура исследования: работа состоит 
из введения, шести разделов, заключения, списка 
использованной литературы.  

1. История возникновения теоремы 
Хана-Банаха 

Большой вклад в историю развития тео-
ремы Хана-Банаха внесли известные ученые: ав-
стрийский математик Эдуард Хелли (1884-1943); 
венгерский и шведский математик Марсель Рис 
(1886-1969).  

История теоремы Хана-Банаха несколько 
необычна. Эдуард Хелли считается одним из ос-
новоположников функционального анализа, но 
теорема названа в честь австрийского математика 
Ганса Хана (1879-1934) и польского математика 
Стефана Банаха (1892-1945), которые незави-
симо друг от друга доказали ее в конце 1920-х го-
дов.  

Тем не менее, теорема возникла в резуль-
тате работ других учёных: 

Эдуард Хелли в 1912 году доказал част-
ный случай теоремы для пространства непрерыв-
ных функций на интервале. 

Марсель Рис в 1923 году доказал теорему 
о расширении, из которой можно вывести тео-
рему Хана-Банаха. 

 Теорема Хана-Банаха утверждает, что 
любой ограниченный линейный функционал, 
определённый на подпространстве нормирован-
ного пространства, можно продолжить на все про-
странство с сохранением нормы.  

Доказательства теоремы Хана-Банаха ис-
пользуют разные методы, например: 

Метод Хелли. Хелли показал, что некото-
рые линейные функционалы, определённые в 
подпространстве определённого типа нормиро-
ванного пространства, имеют расширение той же 
нормы, используя индукцию. 

Метод Хана. В 1927 году Хан определил 
общие банаховы пространства и применил метод 

Хелли для доказательства сохраняющей норму 
версии теоремы Хана-Банаха для банаховых про-
странств. 

Обобщение Банаха. В 1929 году Банах, ко-
торый не знал о результате Хана, обобщил его, за-
менив версию, сохраняющую норму, версией с 
доминирующим расширением, использующей 
сублинейные функции. 

Теорема Хана-Банаха имеет множество 
приложений в функциональном анализе, напри-
мер: 

Решение бесконечных систем уравнений. 
Это необходимо для решения таких задач, как за-
дача о моментах, в которой, зная все потенциаль-
ные моменты функции, нужно определить, суще-
ствует ли функция с такими моментами, и если да, 
то найти ее по этим моментам. Другой подобной 
задачей является задача о косинусном ряде 
Фурье, в которой, зная все потенциальные коэф-
фициенты косинуса Фурье, нужно определить, су-
ществует ли функция с такими коэффициентами, 
и если да, то найти ее.  

2. Непрерывные линейные функционалы 
В данной статье будут рассмотрены следу-

ющие линейные нормированные пространства. 
1. [ , ]C a b  – пространство всех непрерыв-

ных на отрезке [ , ]a b  функций с нормой 

[ , ]
max ( )
t a b

x x t
∈

= . 

2. pl  – пространство всех числовых после-
довательностей, таких, что 

1

1
,1

pp
k

k
x p

∞

=

  < ∞ ≤ < ∞ 
 
∑  с нормой 

1

1

pp
k

k
x x

∞

=

 =  
 
∑ . 

3. [ , ]pL a b  – пространство всех функций, 

определенных на отрезке [ , ]a b , для которых ин-

теграл Лебега  
[ , ]

( ) p

a b

x t dt < ∞∫  – конечен, с 

нормой 
1

[ , ]

( )
p

p

a b

x x t dt
 

=   
 
∫ . 

4. [ , ]M a b  – пространство всех ограни-
ченных на [ , ]a b [ функций с нормой 

[ , ]
sup ( )

t a b
x x t

∈
= . 

5. nl∞  – пространство всех упорядоченных 
наборов из n действительных чисел. 
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1( , , ), 1nx x x n= ≥ . Норма определяется по 

формуле 
1
max kk n

x x
≤ ≤

= . 

6. ,1n
pl p≤ < ∞  – пространство всех упо-

рядоченных наборов из n действительных чисел 

1( , , ), 1nx x x n= ≥ . Норма определяется с по-
мощью равенства 

1

1

n pp
k

k
x x

=

 =  
 
∑ . 

На этих линейных нормированных про-
странствах будут заданы линейные непрерывные 
функционалы. 

Определение 1. Пусть L – линейное нор-
мированное пространство. Отображение f, дей-
ствующее из L в R, будем называть функциона-
лом.   

Определение 2. Функционал f называется 
линейным, если он аддитивен, то есть для всех l1, 
l2 из L 

f (l1+ l2) = f (l1) + f (l2), 
и однороден, то есть для всех l L∈  и любых ве-
щественных чисел λ 
f (λl) = λf(l). 

Множество { }ker : ( ) 0f x L f x= ∈ =  
называется ядром функционала f. 

Определение 3. Функционал f называется 
непрерывным в точке 0x L∈ , если для любого 

0ε >  существует δ  > 0, что для всех x таких, что 

0 L
x x δ− <  выполняется неравенство 

0( ) ( )f x f x ε− < . 
На практике чаще применяют эквивалент-

ное определение непрерывности:  
Определение 4. Функционал f называется 

непрерывным в точке 0x L∈ , если для любой 

последовательности { }nx , сходящейся к 0x , 

( )nf x  сходится к 0( )f x .  
Верно утверждение: Если линейный 

функционал непрерывен в какой-либо одной 
точке 0x L∈ , то он непрерывен на L.  

Определение 5. Линейный функционал f, 
заданный на нормированном пространстве L, 
называется ограниченным, если существует та-
кая постоянная c > 0, что для всех элементов 
x L∈  выполняется равенство 

( )
L

f x c x≤ . 
Можно показать, что из непрерывности 

функционала следует его ограниченность, верно и 
обратное. 
 

3. Геометрический смысл линейного 
функционала 

Определение 1. Пусть L – линейное про-
странство. L0 – линейное подпространство L. L0 
называется гиперподпространством, если суще-
ствует элемент 0 0x L∉  такой, что 

0 0( , )L lin x L= . Говорят, что L0 имеет коразмер-
ность 1. Например, если L – n-мерное простран-
ство, то гиперподпространство – это (n-1)-мерное 
подпространство.     

Принимаем без доказательства, что верны 
следующие утверждения: 

1. Ядро функционала ker f является гипер-
подпространством. Здесь f – линейный функцио-
нал. 

2. Пусть f1 и f2 – линейные функционалы, 
заданные на L.  Тогда, если ker f1 = ker f2, то f1 =λf2 
для некоторого числа λ.  

Определение 2. Пусть L0 – гиперподпро-
странство в L. Множество L1 = L0 + x называется 
гиперплоскостью. Здесь 0x L∉ . Иными сло-
вами, гиперплоскость – это множество, получаю-
щееся из гиперподпространства параллельным 
переносом (сдвигом) на какой-нибудь вектор 
x L∈ . Например, если L=R3, то гиперплоскость 
– это плоскость, не проходящая через начало ко-
ординат. 

Справедливы следующие утверждения: 
Утверждение 3.1. 

{ }: ( ) , 0M x L f x c c= ∈ = ≠  
является гиперплоскостью. 

Утверждение 3.2.  
Множество M L⊂  является гиперплос-

костью тогда и только тогда, когда M можно пред-
ставить в виде { }: ( ) 1M x L f x= ∈ = , где f – 
линейный функционал, причем f определяется од-
нозначно.  

Таким образом, можно установить взаимно 
однозначное соответствие между всеми нетриви-
альными линейными функционалами, определен-
ными на L, и всеми гиперплоскотями в L.  

Можно показать, что линейный функцио-
нал в нормированном пространстве непрерывен 
тогда и только тогда, когда его ядро замкнуто.    

Любая гиперплоскость в линейном норми-
рованном пространстве или замкнута, или плотна 
в нем, а так же является выпуклым множеством.  

Пусть f – линейный функционал, опреде-
ленный на линейном нормированном простран-
стве L.  

Можно показать, что f непрерывен тогда и 
только тогда, когда множества 
{ }: ( )x L f x c∈ <  и { }: ( )x L f x c∈ >  явля-
ются открытыми в пространстве L. 
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4. Норма функционала 
Пусть f – линейный непрерывный функци-

онал, заданный на нормированном пространстве 
L. Так как f является ограниченным функциона-
лом, то существует постоянная M такая, что 

( )f x M x≤ .                               (4.1) 
Определение 1. Наименьшая из постоян-

ных M, удовлетворяющая неравенству (4.1), назы-
вается нормой и обозначается f . 

Таким образом, 
( )f x f x≤ .                                (4.2) 

Отметим некоторые свойства нормы функ-
ционала 

1. 
0

( )
sup
x

f x
f

x≠
= . 

2. 
1 1

sup ( ) sup ( )
x x

f f x f x
≤ =

= = . 

Норма функционала обладает всеми свой-
ствами нормы, а именно 

1) 0, 0 0;f f f≥ = ⇔ =  

2) ;f fλ λ=  

3) f g f g+ ≤ + . 
Приведем примеры вычисления нормы 

функционала. 
Пример 4.1. Вычислить норму функцио-

нала ( ) (1) 2 (2)f x x x= − , заданного в про-
странстве [0, 2]C . 

Решение. В общем случае имеем простран-
ство C[a,b]. По условию 0, 2.a b= =   Норма 

[0,2]
max ( )
t

x x t
∈

= . 

Используя неравенство треугольника и определе-
ние нормы в пространстве  [0, 2]C , имеем 

[0,2]
( ) (1) 2 (2) 3

C
f x x x x≤ + ≤ . 

Так как f  – это наименьшая константа, 

то 3f ≤ . Чтобы получить противоположное по 
знаку неравенство, воспользуемся тем, что 

[0,2]

( )

C

f x
f

x
≥  для любого 0x ≠ . Тогда 

[0,2]

(1) 2 (2)
max ( )
t

x x
f

x t
∈

−
≥ . 

Выберем непрерывную функцию x так, 
чтобы 

[0,2]
max ( ) 1
t

x t
∈

=  и (1) 1x = , и (2) 1x = − . 

Такие функции существуют. Для этого нужно со-
единить точки (1,1) и (2,-1) так, чтобы не выйти за 
пределы полосы, определяемой прямыми y=1, y=-

1. Тогда 3f ≥  и вместе с ранее полученным не-

равенством имеем 3f = .   
Пример 4.2. Вычислить норму функцио-

нала 1 3( ) 2 3f x x x= − , заданного в пространстве 

4.l  
Решение. 
Имеем пространство pl . По условию p=4. 

Тогда 

1
44

1
,k

k
x

∞

=

  < ∞ 
 
∑ норма 

1
44

1
k

k
x x

∞

=

 =  
 
∑ . 

Имеем отображение: 
{ } { }1 2 1 3: ( , ) ( ) 2 3kf x x x x x x= ∈ → −  . 

Воспользуемся неравенством Гельдера: 
1 1

1 1 1

p qp q
i i i i

i i i
a b a b

∞ ∞ ∞

= = =

   ≤ ⋅   
   

∑ ∑ ∑             (4.3) 

где 
1 1 1; , 1p q
p q
+ = ≥ . 

Взяв 

1 1 2 3 3 1

2 3

44, , , 0, , 2,
3

0, 3, 0, 4,i i

p q a x a a x b

b b a b i

= = = = = =

= = − = = ≥
получим

( )
4

3 14 4 4 4 4 43 3
1 3 1 3( ) 2 3 2 3

.
l

f x x x x x

c x

 = − ≤ + − ⋅ + ≤ 
 

≤ ⋅

 

Здесь 

3
4 4 4
3 32 3c

 
= + 
 

. 

Из определения нормы функционала сле-
дует, что f c≤ . С другой стороны, для любого

4 ( 0)x l x∈ ≠  выполняется неравенство 

4

( )

l

f x
f

x
≥ , т.к. ( )f x f x≤ .   Подберем 

последовательность x  так, чтобы 



4

( )

l

f x
c

x
= . 

Для этого учтем, что неравенство Гельдера 
(4.3) обращается в равенство, если 

1 sgnp
i i ib a a−= ⋅ .  
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Взяв 

1 3
4 , 4, 2, 3, 0, 1,3
3 ip q a a a i= = = = − = ≠  и 



1
3

1
3

2 , 1;

3 , 3;
0, ,

i

i

x i
в остальных случаях


=

= − =




 

получим ( ) 
4

1
4 4 4 4 4
3 3 3 32 3 , 2 3

l
f x x

 
= + = + 

 
. 

Тогда 



4

( )

l

f x
c

x
= . Окончательно имеем f c=  

Пример 4.3. Вычислить норму функцио-
нала 

[ 1,1]

( ) ( )f x tx t dt
−

= ∫ , заданного в простран-

стве 3[ 1,1]L − .  

Решение. Имеем пространство [ , ]pL a b . 
По условию p=3, a=-1, b=1. 

Интеграл Лебега 
3

[ 1,1]

( )x t dt
−

< ∞∫ , с нор-

мой 

1
3

3

[ 1,1]

( )x x t dt
−

 
=   
 
∫ . 

Имеем отображение: 

{ }
[ 1,1]

: ( ) ( )f x x t tx t dt
−

  = →  
  
∫  

Используем интегральное неравенство 
Гельдера: 

1 1

[ , ] [ , ] [ , ]

( ) ( ) ( ) ( )
p q

p q

a b a b a b

y t x t dt y t dt x t dt
   

≤       
   

∫ ∫ ∫  

(4.4) 

Здесь 
1 1 1; , 1p q
p q
+ = ≥ .  

Взяв 
3 , 3, ( )
2

p q y t t= = = , получим  

2 1
3 33 3

2

[ 1,1] [ 1,1]

( ) ( )f x t dt x t dt
− −

   
≤       
   
∫ ∫ . 

Вычислив первый интеграл, получим 
2
34

5
f  ≤  

 
. С другой стороны, учтем, что нера-

венство Гельдера (4.4) обращается в равенство, 

если 
1( ) ( ) sgn ( )px t y t y t−= . Выберем 


1
2( ) sgnx t t t= . Тогда 

3
2

[ 1,1]

4( )
5

f x t dt
−

= =∫ , а 


3

1 2
33 3

2
[ 1,]

[ 1,1]

4
5L

x t dt
−

−

   = =       
∫ . Так как 

 2
3( ) 4

5

f x
f

x
 ≥ =  
 

, то вместе с доказанным 

ранее неравенством получим 

2
34

5
f  =  

 
.   

Пример 4.4. Вычислить норму функцио-

нала 
1

1

( ) ( )f x tx t dt
−

= ∫ , заданного в пространстве 

C[-1,1]. 
Решение. 
Имеем пространство C[a,b] непрерывных 

на [a,b] функций с нормой 

[ , ]
max ( )
t a b

x x t
∈

= . 

Напишем цепочку неравенств: 
1 1

1 1

1 1

[ 1,1][ 1,1]
1 1

( ) ( ) ( )

max ( ) .
Ct

f x tx t dt t x t dt

x t t dt x t dt

− −

−∈ −
− −

= ≤ ≤

≤ =

∫ ∫

∫ ∫
 

Вычисляя интеграл 
1

1

1t dt
−

=∫ , получаем  

[ 1,1]C
f x

−
≤ . Тогда 1f ≤ . Для получения 

противоположного по знаку неравенства попро-

буем подобрать непрерывную функцию x  так,  

чтобы 



[ 1,1]

( )
1

C

f x

x
−

= . Все попытки найти такую 

непрерывную функцию оказываются безуспеш-
ными. Это объясняется тем, что она не суще-
ствует. Однако если взять функцию 
( ) sgn( )x t t= и рассмотреть функционал f на 

пространстве M[-1,1] – ограниченных на [-1,1] 
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функций , то 



[ 1,1]

( )
1

C

f x

x
−

= . Но функция x  раз-

рывная, а значит, не принадлежит пространству 
C[-1,1].     

Поступим следующим образом. Найдем 
последовательность непрерывных функций xn та-

ких, что ( ) ( )nx t x t→  для каждого [ 1,1].t∈ −  
Для построения последовательности xn нужно 

"подправить" функцию ( ) sgn( )x t t= в месте 
разрыва. Имеем 

11, 1;

1 1( ) , ;

11, 1 .

n

t
n

x t nt t
n n

t
n

 ≤ ≤

= − ≤ ≤

− − ≤ ≤ −

 

 
Вычислим f(xn). Воспользуемся тем, что 

функция txn(t) является четной.  
Тогда 

1
1

2
2

10

1( ) 2 1
3

n

n

n

f x nt dt tdt
n

 
 = + = − 
 
 
∫ ∫ . 

Так как 
[ 1,1]

1n C
x

−
= , то  

2

( ) 11
3

n

n

f x
f

x n
≥ = − . 

Если n устремить к бесконечности, то получим 
1.f ≥  Итак, 1f = . 

В отличие от предыдущих примеров мы не смогли 

найти функцию x  такую, что 
( )f x

f
x

= . 

5. Геометрическая интерпретация 
нормы функционала. 

Утверждение 5.1. Пусть f – линейный не-
прерывный функционал, заданный на нормиро-
ванном пространстве L. Тогда 

1
inf

fx L

f
x

∈

= ;                        (5.1) 

здесь { }: ( ) 1fL x L f x= ∈ = .  
Таким образом, чтобы найти норму функ-

ционала, нужно построить гиперплоскость Lf  и 
найти расстояние d от нуля до этой гиперплоско-

сти. Тогда 
1f
d

= . 

Покажем, как можно найти норму функци-
онала, используя формулу (5.1). 

Пример 5.1. Вычислить норму функцио-
нала 1 2( ) 3 4f x x x= − , заданного в простран-

стве 2l∞ . 
Решение. 
В общем случае имеем пространство nl∞ , 

элементами которого являются упорядоченные 
наборы из n действительных чисел. Норма опре-
деляется по формуле  

1
max kk n

x x
≤ ≤

= . 

В нашем случае n=2. На плоскости по-
строим прямую 1 23 4 1x x− = . Чтобы найти рас-
стояние от нуля до этой прямой, нарисуем шар с 
центром в нуле радиуса r так, чтобы шар не пере-
секал данную прямую. Теперь увеличиваем раз-
мер шара до тех пор, пока он не коснется прямой. 
Радиус этого шара – это и есть расстояние от нуля 
до Lf. Напомним, что { }2 1 2max ,

l
x x x

∞
= , по-

этому шар B[0,r] – это квадрат с центром в нуле, 
стороны которого параллельны координатным 
осям. Длина стороны квадрата равна 2r. В нашем 
случае касание произойдет в точке с координа-
тами (r,-r). Так как точка (r,-r) лежит на прямой, 

то 3 4 1r r+ =  и 
1
7

d = . Окончательно имеем 

7f = . 

6. Теорема Хана – Банаха  

Пусть L – линейное нормированное про-
странство. L0 – некоторое его подпространство. 
Пусть далее на L0 задан линейный непрерывный 
функционал f0. Функционал f называется продол-
жением функционала f0, если f(x) = f0(x) для всех 

0x L∈ . 
Задача о продолжении линейного функци-

онала часто встречается в анализе. Центральное 
место в этой теме занимает следующая теорема.  

Теорема Хана-Банаха. Пусть f0 – линей-
ный непрерывный функционал, заданный на под-
пространстве 0L , 0L L⊂ . Тогда функционал f0 
может быть продолжен до некоторого линейного 
непрерывного функционала f на всем простран-
стве L без увеличения нормы, то есть так, что 

0
0 L L

f f= . 
Можно дать геометрическую интерпрета-

цию теореме Хана-Банаха. Как следует из утвер-
ждения 2.1, уравнение 0 ( ) 1f x =  определяет в 

0L  гиперплоскость, лежащую на расстоянии 
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0

1
f

 до нуля. Продолжая 0f  без увеличения 

нормы до функционала на всем L , мы проводим 
через эту частичную гиперплоскость "большую" 
гиперплоскость на всем L , причем расстояние до 
нуля остается прежним. 

Приведем примеры построения продолже-
ния линейного функционала на плоскости и в 
трехмерном пространстве.   

Пример 6.1. Пусть 0L  – подпространство 
2

1l , определяемое формулой 

{ }2
0 1 1 2: 0L x l x x= ∈ + = . 

На 0L  задан функционал 

0 1 2( ) 2f x x x= − . Найти продолжение функцио-

нала 0f , чтобы выполнялись условия теоремы 
Хана-Банаха. 

Решение. 
Напомним, что в общем случае подпро-

странство ,1n
pl p≤ < ∞  - это пространство, эле-

ментами которого являются упорядоченные 
наборы из n действительных чисел 

1( , , ), 1nx x x n= ≥ . Норма определяется с по-
мощью равенства 

1

1

n pp
k

k
x x

=

 =  
 
∑ . 

По условию p=1, n=2. 
Вычислим норму функционала 0f . По 

определению имеем:   

0
1 2

1 2
0

0 1 2

2 3sup
2L

x x

x x
f

x x+ =

−
= =

+
. 

Теорема 6.1. Пусть f – линейный функцио-
нал, заданный на  , 1n

pl p≤ < ∞ . Тогда суще-

ствует единственный элемент n
qa l∈  такой, что 

1
( )

n

i i
i

f x a x
=

=∑                     (6.1) 

и 

n
ql

f a=                             (6.2) 

где 
1 1 1.
p q
+ =    

Из теоремы 6.1 следует, что искомый функ-
ционал f  имеет вид 

1 1 2 2( )f x a x a x= +  
и 

( )2
1

1 2max ,
l

f a a= . 

Так как функционал f  является продол-

жением 0f , то 1 1 2 2 1 2

1 2

2
0.

a x a x x x
x x

+ = −
 + =

 

Отсюда следует, что 1 2 1 1( ) 3a a x x− = . 

Так как это верно для любого 1x R∈ , то 

1 2 3a a− = . 

Учитывая, что 
0

0 ,
L L

f f= получаем второе 

условие на числа ( )1 2 1 2
3, : max ,
2

a a a a = . 

Таким образом, нужно решить уравнение 

( )1 1
3max , 3
2

a a − = . Построив график 

( )1 1max , 3y a a= − , находим, что 1
3
2

a = . 

Итак, искомый функционал имеет вид 

1 2
3 3( )
2 2

f x x x= − + . 

Приведем пример, показывающий, что 
функционал 0f  может иметь множество продол-
жений. 

Пример 6.2. Пусть подпространство 0L  

пространства 2l∞  определяется формулой 

{ }2
0 1 2:L x l x x∞= ∈ = . 

а 

0 1 2( ) 3f x x x= + . 

Найти продолжение 0f . 
Решение. Используем геометрический 

подход. Вычислим норму 0f , используя утвер-
ждение 3.1. Сейчас гиперплоскость:  

{ }
0 0 1 2: 3 1fA x L x x= ∈ + =  

состоит из одной точки 
1 1,
4 4

M  =  
 

. Так как 

расстояние от 
0f

A  до 0 равно 
1
4

, то 0 4f = . 

Построим теперь гиперплоскость (а сейчас это 
прямая) { }: ( ) 1fA x L f x= ∈ =  так, чтобы она 
прошла через точку M и расстояние до нуля было 

равно 
1
4

. Напомним, как находить расстояние от 

точки до прямой. Берем маленький шар с центром 
в заданной точке и "раздуваем" его до первого ка-
сания с прямой. В нашем случае мы должны нари-

совать шар с центром в нуле и радиусом 
1
4

. 
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Выясним, как выглядит шар в пространстве 2l∞ . 

Вспоминая, как задается норма в 2l∞ , получаем 
формулу 

( )2
1 2

1 10, : max ,
4 4

B x l x x∞
   = ∈ =     

. 

Таким образом, шар в пространстве 2l∞  – 
это квадрат со сторонами, параллельными осям 
координат. Заметим, что точка M попала в "вер-

шину" шара 
10,
4

B  
  

. Это означает, что можно 

проводить любую прямую, которая проходит че-

рез M и заключена между прямыми 1
1
4

x =  и 

2
1
4

x =  (прямая не должна пересекать шар). 

Уравнение любой такой прямой имеет вид     

1 1 2 2 1 2
1 1 0, , 0
4 4

a x a x a a   − + − = ≥   
   

. 

Это уравнение можно записать по-другому 

( )1 1 2 2
1 2

4 1a x a x
a a

+ =
+

. 

Итак, функционал 

( )1 1 2 2
1 2

4( )f x a x a x
a a

= +
+

, 

где 1 2, 0a a ≥  и 2 2
1 2 0a a+ ≠ , является искомым. 

Заметим, что если точка попадает на грань 
шара (как в задаче 6.1), то продолжение един-
ственное, а если в вершину (как в задаче 6.2), то 
продолжений множество. В частности, отсюда 
следует, что в евклидовом пространстве 2

2l  про-

должение единственно, так как шар в 2
2l  круглый. 

Пример 6.3. Пусть подпространство 0L  

пространства 3
1l  определяется формулой  

{ }2
0 1 2 3: , 2 , 3L x l x t x t x t∞= ∈ = = = . 

а 

0 1 2 3( ) 2 3f x x x x= + − . 

Найти продолжение 0f . 
Решение. Вычислим норму функционала

0.f  
Имеем 

0

2 6 3 5sup .
2 3 6t

t t t
f

t t t
+ −

= =
+ +

 

Функционал f  имеет вид 

1 1 2 2 3 3( )f x a x a x a x= + + . 

Так как f  является продолжением 0f  и их 
нормы совпадают, то получаем следующую си-
стему: 

( )

1 1 2 2 3 3 1 2 3

1

2

3

1 2 3

2 3

2
3

5max , , .
6

a x a x a x x x x
x t
x t
x t

a a a


 + + = + −


=
 =
 =


=

 

 
Первые четыре условия дают равенство 

1 2 32 3 5a a a+ + = . Итак, остается решить такую 
задачу: 

( )2 3 2 3
5max 5 2 3 , ,
6

a a a a− − = . 

 
Можно просто перебрать варианты, когда 

одно из чисел равно 
5
6

, а два других не превосхо-

дят 
5
6

. Мы решим задачу по-другому. Так как 

2 3
55 2 3
6

a a− − ≤ , то 2 3
25 352 3
6 6

a a≤ + ≤ . 

С другой стороны, 2
5
6

a ≤  и 3
5
6

a ≤ , а значит, 

2 3
252 3
6

a a+ ≤ .  

Следовательно, существует единственное 

решение задачи 1 2 3
5
6

a a a= = = .  

Заключение 
Новые задачи физики и математики, по-

явившиеся в XX столетии, привели к появлению 
нового раздела математики – функциональный 
анализ. 

Линейные функционалы и их продолжение 
на все функциональное пространство с сохране-
нием нормы является мощным математическим 
аппаратом для развития следующих направлений 
современной математики: 

1. Некоммутативный функциональный 
анализ.  

2. Теория операторных алгебр.  
3. Вероятностный и стохастический функ-

циональный анализ.  
4. Функциональный анализ на простран-

ствах фрактальных структур. 
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Добровольский Ю.Н. Теорема Хана-Банаха – как одна из основных теорем функциональ-
ного анализа. Рассмотрена история возникновения теоремы Хана-Банаха. Введены основ-
ные линейные нормированные пространства, линейные непрерывные функционалы и их 
нормы. Введено понятие гиперподпространство, гиперплоскость. Приведены примеры на 
вычисление нормы функционала и теорема о продолжении функционала на все простран-
ство с сохранением нормы. Линейные функционалы и их продолжение на все функциональное 
пространство с сохранением нормы является мощным математическим аппаратом для 
развития многих направлений современной математики. 
 
Ключевые слова: функциональные пространства, линейные функционалы, гиперподпро-
странство, гиперплоскость, норма функционала, теорема Хана-Банаха. 
 
Dobrovolsky Y.N. Khan-Banach theorem - as one of the main theorems of functional analysis. 
The history of the Khan-Banach theorem is considered. Basic linear normalized spaces, linear con-
tinuous functionals and their norms are introduced. Introduced the concept of hyperpodpro-space, 
hyperplane. Examples are given for calculating the functional norm and the theorem on extending 
the functional to the entire space while maintaining the norm. Linear functionals and their extension 
to the entire functional space while preserving the norm are a powerful mathematical tool for the 
development of many areas of modern mathematics. 
 
Key words: functional spaces, linear functionals, hyperspace, hyperplane, functional norm, Khan-
Banach theorem. 
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