Convolutional neural networks in face detection and recognition systems

Authors

  • V.V. Kocheturov
  • O.I. Fedyaev Donetsk National Technical University

Keywords:

convolutional neural networks, face recognition, face detection, face alignment, network architectures, computer vision

Abstract

The article discusses the application of convolutional neural networks at different stages of face recognition systems: detection, alignment and recognition. The key architectures and methods used in each stage are reviewed. Multitasking CNNs that perform multiple functions simultaneously are described. Current development trends are highlighted: the application of attention mechanisms, transformers, and learning from small data.

Author Biography

O.I. Fedyaev, Donetsk National Technical University

кандидат технических наук, доцент, доцент кафедры программной инженерии им. Л. П. Фельдмана факультета интеллектуальных систем и программирования ФГБОУ ВО «Донецкий национальный технический университет»

References

Федяев, О. И. Автоматическая регистрация присутствия студентов на учебном занятии с помощью компьютерного зрения / О. И. Федяев, И. А. Коломойцева // XXI Национальная конференция по искусственному интеллекту с международным участием КИИ-2023 (Смоленск, 16-20 октября 2023 г.). Труды конференции. В 2-х томах. Т.1. – Смоленск: Принт-Экспресс, 2023. – С. 294-303.

Du L., Zhang R., Wang X. Overview of two-stage object detection algorithms //Journal of Physics: Conference Series. – IOP Publishing, 2020. – Т. 1544. – №. 1. – С. 012033.

Zhang Y. et al. A comprehensive review of one-stage networks for object detection //2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). – IEEE, 2021. – С. 1-6.

Zhang N., Luo J., Gao W. Research on face detection technology based on MTCNN //2020 international conference on computer network, electronic and automation (ICCNEA). – IEEE, 2020. – С. 154-158.

Deng J. et al. Retinaface: Single-shot multi-level face localisation in the wild //Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. – 2020. – С. 5203-5212.

Wang X., Bo L., Fuxin L. Adaptive wing loss for robust face alignment via heatmap regression //Proceedings of the IEEE/CVF international conference on computer vision. – 2019. – С. 6971-6981.

Sam S. M. et al. Offline signature verification using deep learning convolutional neural network (CNN) architectures GoogLeNet inception-v1 and inception-v3 //Procedia Computer Science. – 2019. – Т. 161. – С. 475-483.

Zhang X. et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices //Proceedings of the IEEE conference on computer vision and pattern recognition. – 2018. – С. 6848-6856.

Alzubaidi L. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions //Journal of big Data. – 2021. – Т. 8. – С. 1-74.

Holkar A., Walambe R., Kotecha K. Few-shot learning for face recognition in the presence of image discrepancies for limited multi-class datasets //Image and Vision Computing. – 2022. – Т. 120. – С. 104420.

Published

2025-11-10

How to Cite

Kocheturov В. В., & Fedyaev О. И. (2025). Convolutional neural networks in face detection and recognition systems. Informatics and Cybernetics, (1 (39), 26–32. Retrieved from https://ojs.donntu.ru/infcyb/article/view/571

Issue

Section

Информатика и вычислительная техника