Spatial Analysis of Resonant Wave Characteristics of Piecewise Inhomogeneous Parts
Keywords:
WAVE CHARACTERISTICS, LOCAL EDGE EFFECTS, NATURAL FREQUENCIES AND VIBRATION FORMS, SINGULAR ZONES, THICKNESS RESONANCE, FINITE ELEMENT METHODAbstract
The dynamic finite element model plays a key role in solving the complex problem of ensuring the vibration strength of a product structure. Modern computer technology, software products, and testing and measuring systems make it possible to create a detailed model of the product design, and, based on experiment, to build and confirm its accuracy. The solution of these problems is possible in modern finite element analysis systems. The ANSYS program is one of the most universal, developing and popular finite element analysis systems among specialists involved in
automated engineering calculations (CAE, Computer-Aided Engineering). The finite element model of an automobile part is a reliable tool for analyzing the strength of a product when its operating conditions change, changes in its design, as well as when creating new products of a similar class. The methodological value of this study lies in the development of an algorithm for studying the spectrum of natural frequencies and natural vibration modes of a three-dimensional prismatic part in the vicinity of irregular points of the domain boundary and at the internal interface of the domains, depending on the geometry and elastic parameters of the joined domains. The qualitative and quantitative spatial analysis of the mathematical and mechanical characteristics of the wave field, as well as their influence on strength changes in a prismatic part is of practical interest. The object of study is a piecewise inhomogeneous three-dimensional prism. When constructing the algorithm, the basis for calculating the determination of natural frequencies and modes (modes) of natural vibrations of the eyelet is based on modal analysis (determining natural frequencies and modes of natural vibrations). The problem was solved using the finite element method in the ANSYS package. The solution method and the conducted modal analysis helped to establish the vibration parameters of the prismatic part: a study was carried out on the spectrum of resonant frequencies and natural modes of vibration depending on the elastic and geometric parameters of the part; the natural frequencies and modes of vibration were determined. Using this technique, it is possible to prevent the occurrence of dangerous stresses in structures by modeling measures to eliminate resonant frequencies in a model of the automotive part under study.
References
Ватульян, А. О. Об оценке законов радиальной неоднородности в цилиндрическом волноводе / А. О. Ватульян, В. О. Юров // Акустический журнал. – 2020. – Т. 66, № 2. – С. 119–127.
Вовк, Л. П. Особенности локальной концентрации волнового поля на границе раздела упругих сред / Л. П. Вовк. – Донецк : Норд-Пресс, 2004. – 267 с.
Вовк, Л. П. Анализ спектра резонансных частот неоднородной упругой призматической детали с учетом ее толщины / Л. П. Вовк,
Е. С. Кисель, И. В. Даниленко // Вести Автомобильно-дорожного института = Bulletin of the Automobile and Highway Institute. – 2020. – № 3(34). – С. 20–26.
Глушков, Е. В. Гибридная численно-аналитическая схема для расчета дифракции упругих волн в локально неоднородных волноводах /
Е. В. Глушков, Н. В. Глушкова, А. А. Евдокимов // Акустический журнал. – 2018. – Т. 64, № 1. – С. 3–12.
Быков, В. Г. Прохождение через резонанс статически неуравновешенного ротора с «неидеальным» автобалансировочным устройством / В. Г. Быков, А. С. Ковачев // Вестник СПбГУ. Математика. Механика. Астрономия. – 2017. – Т. 4(62), вып. 4. – С. 671–680.
Вильде, М. В. Краевые и интерфейсные резонансные явления в упругих телах / М. В. Вильде, Ю. Д. Каплунов, Л. Ю. Коссович. – Москва : Физматлит, 2010. – 280 c. – ISBN 978-5-9221-1280-2.
Laser-generated Rayleigh wave for width gauging of subsurface lateral rectangular defects / Chuanyong Wang, Anyu Sun, Xiaoyu Yang [et al.] // Journal of Applied Physics. – 2018. – № 124(6) – P. 124–130.
Sinclair, G. B. Stress singularities in classical elasticity-I: Removal, interpretation and analysis / G. B. Sinclair // Applied Mechanics Reviews. – 2004. – Vol. 57, № 4. – P. 251–297.